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Introduction and background
Integral Equations

▶ Integral equations are equations in which some unknown function to be determined
appears under one or several integral signs [5, 6].

▶ The name integral equation was given by du Bois-Reymond in 1888.

▶ There are many types of integral equations.

▶ The classification of integral equations depends mainly on the limits of integration
and the kernel of the equation.
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Introduction and background
Integral Equations

▶ Integral equations arise in several fields of science; for example, in elasticity, potential
theory, fluid mechanics, biomechanics, approximation theory, plasticity, game
theory, queuing theory, medicine, acoustics, heat and mass transfer, economics [4].

▶ More details about integral equations and their origins can be found in [2, 3].
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Introduction and background
Integral Equations

▶ We will focus our concerned on equations of the form:

−
∫ 1

−1

φ(t)
t − x

dt +
∫ 1

−1
k(x , t)φ(t)dt = f (x), −1 < x < 1, (1)

where the kernel function k(x , t) and the forcing function f (x) are prescribed and the
function φ(t) is the unknown function to be determined.

▶ Equation (1) is called Cauchy-type singular integral equation of the first kind and
presents a Cauchy-type singularity at t = x .

▶ Singular integral equations with Cauchy kernels appear in many practical problems
of elasticity, crack theory, wing theory and fluid flow [1].
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Introduction and background
Integral Equations

▶ The simplest singular integral equation of the first kind has the form

−
∫ 1

−1

φ(t)
t − x

dt = f (x), −1 < x < 1. (2)

▶ Equation (2) is called the characteristic singular integral equation and it is obtained
when k(x , t) = 0 in (1).

▶ The integral in (2) is understood in the principal value sense and is defined as

−
∫ 1

−1

φ(t)
t − x

dt = lim
ε→0

[∫ x−ε

−1

φ(t)
t − x

dt +
∫ 1

x+ε

φ(t)
t − x

dt

]
, −1 < x < 1. (3)
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Introduction and background
Integral Equations

▶ The closed-form solution of the characteristic singular integral equation (2), which is
unbounded at both end-points x = ±1, is given by the formula

φ(x) = − 1
π2

√
1 − x2

∫ 1

−1

√
1 − t2f (t)

t − x
dt +

C
π
√

1 − x2
, (4)

where

C =

∫ 1

−1
φ(t)dt . (5)

▶ Equation (2) can also be solved to obtain an approximate analytical solution and a
numerical solution.
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Study Problem
Cauchy-type singular integral equation

▶ Consider the problem of solving the singular integral equation given by

1
π

d
dx

(
−
∫ 1

0

φξ(ξ)

ξ − x
dξ

)
= 1, 0 ⩽ x ⩽ 1, (6)

subject to the boundary conditions

φx(0) = 0, φ(1) = 0. (7a-b)

▶ We want to solve (6) subject (7a-b) to both analytically and numerically.
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